

# 12BR70 LOW FREQUENCY TRANSDUCER

### **KEY FEATURES**

- 125 W<sub>RMS</sub> power handling
- Sensitivity: 93 dB @ 1 W @ 1 m
- 2" copper voice coil
- Extended controlled displacement: X<sub>max</sub> ± 8 mm
- Low resonance for low frequency extension
- Flat frequency response and low distortion
- Rubber surround
- Die cast aluminium basket
- Ferrite magnet



### **TECHNICAL SPECIFICATIONS**

| 300 mm 12 in                           |
|----------------------------------------|
| 8 Ω                                    |
| 6,6 Ω                                  |
| 125 W <sub>RMS</sub>                   |
| 250 W                                  |
| 93 dB 1W @ 1m @ 2π                     |
| 25 - 4.000 Hz                          |
| 50 / 120 I 1,77 / 4,24 ft <sup>3</sup> |
| 52 mm 2 in                             |
| 2,75 kg 6,06 lb                        |
| 12,1 N/A                               |
| 0,074 kg                               |
| 19 mm                                  |
| 7 mm                                   |
|                                        |

### THIELE-SMALL PARAMETERS\*\*

| Resonant frequency, f <sub>s</sub>                         | 31 Hz                |
|------------------------------------------------------------|----------------------|
| D.C. Voice coil resistance, R <sub>e</sub>                 | 5,6 Ω                |
| Mechanical Quality Factor, Q <sub>ms</sub>                 | 4,44                 |
| Electrical Quality Factor, Qes                             | 0,56                 |
| Total Quality Factor, Qts                                  | 0,50                 |
| Equivalent Air Volume to C <sub>ms</sub> , V <sub>as</sub> | 142 I                |
| Mechanical Compliance, C <sub>ms</sub>                     | $345~\mu m$ / $N$    |
| Mechanical Resistance, R <sub>ms</sub>                     | 3,3 kg / s           |
| Efficiency, η <sub>0</sub>                                 | 0,76 %               |
| Effective Surface Area, S <sub>d</sub>                     | 0,054 m <sup>2</sup> |
| Maximum Displacement, X <sub>max</sub> ***                 | 8 mm                 |
| Displacement Volume, V <sub>d</sub>                        | 340 cm <sup>3</sup>  |
| Voice Coil Inductance, L <sub>e</sub> @ 1 kHz              | 0,85 mH              |

### **DIMENSION DRAWINGS**



#### **MOUNTING INFORMATION**

| Overall diameter<br>Bolt circle diameter | 312 mm<br>294,5 mm | 12,28 in<br>11,59 in |
|------------------------------------------|--------------------|----------------------|
| Baffle cutout diameter:                  | 277 5 mm           | 10 02 in             |
| - Front mount<br>- Rear mount            | 277,5 mm<br>280 mm | 10,93 in 11,02 in    |
| Depth                                    | 125 mm             | 4,92 in              |
| Net weight                               | 3,6 kg             | 7,93 lb              |
| Shipping weight                          | 4,1 kg             | 9,04 lb              |

#### Notes

- \* The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- \*\* T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- \*\*\* The  $X_{max}$  is calculated as  $(L_{VC}$   $H_{ag})/2$  +  $(H_{ag}/3,5)$ , where  $L_{VC}$  is the voice coil length and  $H_{ag}$  is the air gap height.



## 12BR70 LOW FREQUENCY TRANSDUCER



#### FREQUENCY RESPONSE AND DISTORTION



Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

### beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)
• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •